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Abstract

Glioblastoma multiform (GBM) is the most common malignant brain tumor characterized by poor prognosis,
increased invasiveness, and high relapse rates. The relative survival estimates are quite low in spite of the standard
treatment for GBM in recent years. Now, it has been gradually accepted that the amount of tumor mass removed
correlates with longer survival rates. Although new technique advances allowing intraoperative analysis of tumor
and normal brain tissue and functional paradigms based on stimulation techniques to map eloquent areas have
been used for GBM resection, visual identification of tumor margins still remains a challenge for neurosurgeons.
This article attempts to review and summarize the evolution of surgical resection for glioblastomas.
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Background

Glioblastoma multiform (GBM) is the most common of
all malignant central nervous system (CNS) tumors,
which accounts for 47.1% of primary malignant brain
tumors, or about 12,390 new cases each year in the
USA [1]. Since GBM is one of the most aggressive types
of cancer, relative survival estimates are quite low, with
only 5.1% of patients surviving 5years after diagnosis
[2]. The optimal treatment for GBM consists of the
combination of surgical resection, radiation therapy,
and chemotherapy [3-5]. The surgical resection for gli-
oma aims at relieving mass effect, achieving cytoreduc-
tion, and providing adequate tissue for histology and
molecular tumor characterization [3]. In the absence of
new neurological deficit, which are one of the prognos-
tic factors in glioblastomas, higher volume of tumor
mass resected correlates with longer survival in GBM
patients [6, 7]. Furthermore, there is no controversy
about maximal resection which is beneficial for pa-
tient’s prognosis compared to biopsy or no surgery. In
general, there are three stages in the development of
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surgical treatment for GBM: (1) early biopsy, (2) gross
total resection (GTR) for contrast-enhanced T1 mag-
netic resonance imaging (MRI), and (3) Maximal-resec-
tion for T2 magnetic resonance imaging or
fluid-attenuated inversion recovery (FLAIR) abnormal-
ities. This article reviews the key historic literature and
focuses on the evolution of surgical resection strategies
for glioblastomas.

Early biopsy stage

One of the founding fathers of modern neurosurgery,
Walter Dandy [8], described the five right hemispherec-
tomy procedures that he performed for the treatment
of gliomas. Though he briefly mentioned the patholo-
gies for some of the cases, it is safe to judge from his
description that a number of tumors possessed the
characteristics of malignancy: spreading to the contra-
lateral side via corpus callosum, and recurrence in a
short period of time. In the conclusion part, Dandy
concluded that although this was a very aggressive op-
eration to be advised, it nevertheless offers much longer
extension of life to patients compared to any other pos-
sible form of treatment. Moreover, when the tumor
cannot be completely resected, the procedure offers a
treatment possibility otherwise not obtainable in certain
tumors situated within the confines of the hemisphere.
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This can be considered as the first documented surgical
procedure proposed for the treatment of malignant
gliomas.

Contrast-enhanced T1 MRI for gross total
resection

With the advent of computed tomography (CT) and
magnetic resonance imaging (MRI), neurosurgeons
were able to localize the tumor preoperatively, dramat-
ically improving surgical accuracy and lowering mor-
bidity and mortality. Moreover, the amount of tumor
mass removed was no longer an approximate estimate
of the neurosurgeons. Lacroix et al. [9] introduced the
novel concept of a maximum extent of resection (EOR).
The study reported the result of a retrospective study
based on a cohort of 416 patients with histological
proven GBM who underwent tumor resection and
identified five prognostic predictors including age, Kar-
nofsky Performance Scale (KPS) score, extent of resec-
tion, and the degree of necrosis and enhancement on
preoperative MRI. Furthermore, they reached the con-
clusion that resection of 89% or more of the tumor vol-
ume was necessary to obtain significant survival
improvement after surgery, while resection of 98% or
more of the tumor volume is a significant independent
predictor of survival in the multivariate analysis for the
whole group. This paper established the concept that
the highest tumor volume resected leads to better prog-
nosis in GBM. Specifically, resection of 89% or more of
the tumor volume significantly increases patient’s sur-
vival. Ten years later, Sanai et al. [10] looked at a cohort
of 500 newly diagnosed supratentorial GBM patients
between 1997 and 2005 who underwent surgical resec-
tion of the tumors followed by standard chemotherapy
and radiation therapy. Patients that had previous resec-
tion or neoadjuvant therapy were excluded. Interest-
ingly, it was demonstrated that as little as 78% EOR
resulted in a significant survival advantage. At almost
the same time, Orringer et al. [11] showed that EOR is
significantly affected by tumor location, size, and
neurosurgeon’s experience. This retrospective study
also revealed a relationship between EOR and survival
indicating that EOR greater than 90% was associated
with greater 1-year survival than EOR less than 90%.
However, it was objected that the mixed patient sam-
pling of both newly diagnosed and recurrent GBM dis-
rupted the uniformity of the study.

The concept of maximum EOR stimulated active re-
search and leads to several other publications on the re-
lationship among gross total resection (GTR), residual
volume (RV), and survival [4, 12-17]. Most recently,
the first quantitative meta-analysis on association of the
extent of resection with survival in glioblastoma was
carried out by Brown et al. [18] who systematically

Page 2 of 6

reviewed relevant papers published from January 1996
to December 2015. Adult patients (37 studies were re-
cruited) with newly diagnosed supratentorial GBM
undergoing various EORs were analyzed and presented
objective overall or progression-free survival (PFS) data.
The meta-analysis revealed that GTR probably in-
creases the likelihood of 1-year survival compared with
subtotal resection (STR) by about 61%, 2-year survival
by about 19%, and progression-free survival at 12
months by 51%. In conclusion, GTR is favored in all pa-
tients with newly diagnosed GBM.

T2 MRI or FLAIR for maximal resection

Sherriff et al. [19] published a retrospective study to
discuss the optimal irradiation pattern for postopera-
tive patients with glioblastoma and suggested that
most of relapsing tumors occur within 2 cm of the ori-
ginal contrast-enhanced mass. Due to the invasive na-
ture of glioblastoma, it is not surprising that the tumor
cells have already infiltrated beyond the contrast-en-
hanced T1 MRI. Here comes a question: can we do
better than gross total resection? When most of neuro-
surgeons focused on gross total resection of contrast-
enhanced T1 MRI Li et al. [20] pushed the boundary
of surgical resection procedures even further by per-
forming additional resection of the T2 MRI or FLAIR
abnormality beyond the contrast-enhanced T1 MRL
Their conclusion consists of two parts: (1) The median
survival time for complete resection patients was sig-
nificantly longer than that for incomplete resection pa-
tients (15.2 months versus 9.8 months, p <0.001). (2)
Resection of a significant portion (=53.21%) of the T2
MRI or FLAIR abnormality region, if feasible and
safely attempted, could have a beneficial impact on the
survival of patients with GBM (median survival time
20.7 months versus 15.5 months, p<0.001). At the
same time, Brian et al. [21] demonstrated that the
molecular and cellular composition of nonenhanced
(NE) region differ significantly from those of the
contrast-enhanced (CE) regions of GBM as determined
by radiographically localized biopsies. CE samples had
significantly higher cellularity than NE samples. The
NE region showed the histological features of diffusely
infiltrating glioma with neoplastic glial cells inter-
mingled with nonneoplastic and reactive cells. This
novel abnormal T2 MRI or FLAIR resection can be
used to identify and access new therapeutic targets that
may be expressed by infiltrating glioma cells or by
nonneoplastic/reactive cells that play a key role in dis-
ease progression and stimulate further investigations.

Discussion
Dating back to Dandy’s era, investigations on the best
surgical procedures to maximize treatment outcome in
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gliomas have been spanning for almost 100 years. Based
on the concept of obtaining tissue sample for definitive
diagnosis and reducing intracranial pressure, biopsy
remained the main purpose of surgery in the middle to
late twentieth century which was performed by either
burr-hole or craniotomy [22-24]. As more evidence
surfaced supporting the positive correlation between
resection and survival, gross total resection came to the
scientific community attention. Now, maximal safe re-
section of malignant gliomas as the first step of stand-
ard therapy is an accepted treatment strategy in
malignant glioma surgery, and more evidence has eluci-
dated a positive relationship between surgical resection
and survival [18, 20, 25, 26]. In recent years, some new
tools and techniques have been implemented to safely
achieve GTR and to improve surgical results, such as
fluorescein-guided technique, ultrasonography, intraop-
erative MRI (iMRI), and neuronavigation with func-
tional MRI (fMRI). In the past 2years, fluorescein
sodium- and 5-ALA-guided techniques have been re-
ported in many institutions to be effective for maximal
safe resection of GBM and for prolonging the patients’
progression-free survival. Moreover, some reports sup-
ported the notion that these tools have an effect also on
the patients’ overall survival (OS). Although growing
evidence supported the use of intraoperative fluores-
cent agents, there are some hindered drawbacks for
these techniques. To date, 5-ALA remains an expensive
compound and requires special equipment and envir-
onment during the surgical procedure, although specifi-
city and sensitivity for tumoral tissues of 5-ALA are
100% and 85% respectively [27], and fluorescein sodium
has been based only on observational cohort studies
and case series [16, 27].

Similar to 5-ALA-guided resection results, the use
of preoperative fMRI and neuronavigation have im-
proved maximal safe resection of GBM and prolonged
median survival time to 20.7 months in our previously
published article [20]. However, brain shift is an in-
trinsic difficulty in the use of neuronavigation, which
result from patient’s positioning, dural opening, cere-
brospinal fluid (CSF) loss, residual tumor volume de-
creasing, and peritumoral edema. The technique of
iMRI offers a unique method to monitor brain shift,
register whenever necessary, and to quantitative the
residual tumoral volume, then using this data to de-
cide whether further resection is necessary or not.
Some authors have demonstrated that the use of iMRI
achieved higher rate of GTR and significantly im-
proved survival compared with conventional surgery
using intraoperative neuronavigation alone [28-31].
Furthermore, Coburger et al. [32] even found that
combining 5-ALA with iMRI achieved GTR in 100%
of patients compared with 82% when using iMRI
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alone. Eyupoglu et al. [33] also demonstrated that combin-
ing these two techniques of iMRI and 5-ALA significantly
improved life expectancy (from 14 to 18.5 months) for
“supra-complete resection.” However, some authors ar-
gued that MRI only provided tumor anatomic detail and
localization, which have limited utility in delineating the
full tumor contour. Ellen et al. [34] described a novel tech-
nique combining positron emission tomography (PET)--
guided MR spectroscopy (MRS). This study introduced
MRS, which was initially non-diagnostic for malignancy,
as a tool to diagnose grade IV GBM when combined with
PET. Benoit et al. [35] also reported that metabolic infor-
mation helped the surgical planning and PET-guided
resection resulted in longer survival in GBM, while
MRI-guided was not correlated with a significantly better
survival. Limited data is available regarding the OS and
the quality of life of patients, both of which are more of a
concern for neurosurgeons. Although iMRI seems to have
a better application prospect, high cost equipment, operat-
ing room refurbishment, and longer operating time limits
its widespread use.

Intraoperative ultrasound is relatively inexpensive
tool compared to iMRI and is convenient to account
for brain shift, predict residual tumor, and visualize vas-
cular relationships to tumor. Some authors have dem-
onstrated that GTR was achieved in 55%—83% of their
cases with or without neuronavigation when complete
resection was the goal of surgery [36—38]. Prada et al.
[38] recently reported that intraoperative ultrasound
have an effective and specific role in identifying residual
tumor, especially using contrast-enhanced ultrasound
in GBM surgery. In a meta-analysis, Mahboob et al.
[39] found an average GTR rate of 71% for high-grade
gliomas compared to other techniques. However, there
are still some drawbacks. Intraoperative ultrasound is
an operator-dependent technique, so the learning curve
for the technique can be steep and the level of experi-
ence in its use can affect image quality, orientation, and
interpretation. Furthermore, different surface, bleeding,
and hemostatic agents during the surgical procedure
affect image quality, sensitivity, and specificity, which
influence the decision to proceed with further resec-
tion. Despite these drawbacks, the development of 3D
and higher frequency cranial probes still makes this
technology attractive for the removal of malignant gli-
omas in the future.

When identifying eloquent areas of GBM involving
cortical and subcortical regions, emerging technologies
such as awake craniotomy (AC), laser interstitial ther-
mal therapy (LITT), and Raman spectroscopy seem to
be more effective in removing tumors without affecting
the patient’s quality of life. The advantages of AC in-
clude better GTR, improved postoperative functional
status, better postoperative KPS status, lower length of
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hospitalization, and low postoperative morbidities, es-
pecially when the tumor located in eloquent areas
where the neurosurgeon cannot rely on the MRI and
the anatomy itself for the maximal extent of resection
[40-44]. LITT has been used to treat glioblastoma
which was difficult to resect [45], and recurrent GBM
[46]. All patients treated with LITT showed a signifi-
cant increase in overall survival compared to traditional
therapy. Jermyn et al. [47] developed a handheld probe
(Raman spectroscopy) to differentiate between normal
white and grey matter in tumor tissue, and obtained a
sensitivity of 94% and specificity of 91% for WHO grade
IV glioblastoma tissue. Banerjee and Verma [48] highly
endorsed the application prospect of this technology in
glioma. However, only few medical centers reported that
LITT and Raman spectroscopy are effective in GBM ther-
apy, calling for more random trials which are necessary to
evaluate the results of LITT in the future.

Apart from surgical treatment strategies, adjuvant
therapies including chemotherapy and radiotherapy
should be considered in the standard of care for GBM
patients as they also influence patient survival, PFS,
and OS [5, 49-51]. Matsuda et al. [25] reported a me-
dian OS of 36.9 months for patients who underwent
GTR of newly diagnosed GBM, with a particular focus
on the influence of the subventricular zone (SVZ),
combined with high-dose proton beam therapy, com-
pared with a median OS of 26.2 months for patients
treated with conventional radiotherapy. Emmanuel et
al. [52] evaluated GBM patients characterized by
long-term survival (LTS; survival of at least 3years
after diagnosis). Twelve patients out of 101 that under-
went surgical resection became LTS patients. Among
those 12 LTS patients, seven of them had a gross total
resection (GTR), including two with an additional re-
section after iMRI, three had a near total resection and
one had a partial resection, ten patients had a methylation
of methylguanine-DNA methyltransferase (MGMT), only
two had an isocitrate dehydrogenase 1 (IDH1) mutation,
and seven received a full Stupp protocol. Half of the pa-
tients with a second surgery survived at least 2 years post-
operatively. Those encouraging observations emphasize
the importance of maximizing the resection using ad-
vanced techniques, and future research should focus on
the microenvironment of GBM and, if necessary, mul-
tiple surgical procedures although GBM therapy re-
mains challenging.
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