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Abstract 

Background  Coil embolization is a common method for treating unruptured intracranial aneurysms (UIAs). To 
effectively perform coil embolization for UIAs, clinicians must undergo extensive training with the assistance of senior 
physicians over an extended period. This study aimed to establish a deep-learning system for measuring the morpho-
logical features of UIAs and help the surgical planning of coil embolization for UIAs.

Methods  Preoperative computational tomography angiography (CTA) data and surgical data from UIA patients 
receiving coil embolization in our medical institution were retrospectively reviewed. A convolutional neural network 
(CNN) model was trained on the preoperative CTA data, and the morphological features of UIAs were measured 
automatically using this CNN model. The intraclass correlation coefficient (ICC) was utilized to examine the simi-
larity between the morphologies measured by the CNN model and those determined by experienced clinicians. 
A deep neural network model to determine the diameter of first coil was further established based on the CNN 
model within the derivation set (75% of all patients) using neural factorization machines (NFM) model and was vali-
dated using a validation set (25% of all patients). The general match ratio (the difference was within ± 1 mm) 
between the predicted diameter of first coil by model and that used in practical scenario was calculated.

Results  One-hundred fifty-three UIA patients were enrolled in this study. The CNN model could diagnose UIAs 
with an accuracy of 0.97. The performance of this CNN model in measuring the morphological features of UIAs (i.e., 
size, height, neck diameter, dome diameter, and volume) was comparable to the accuracy of senior clinicians (all 
ICC > 0.85). The diameter of first coil predicted by the model established based on CNN model and the diameter 
of first coil used actually exhibited a high general match ratio (0.90) within the derivation set. Moreover, the model 
performed well in recommending the diameter of first coil within the validation set (general match ratio as 0.91).

Conclusion  This study presents a deep-learning system which can help to improve surgical planning of coil emboli-
zation for UIAs.
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Background
Intracranial aneurysm is the leading cause of nontrau-
matic subarachnoid hemorrhage [1, 2]. More than 70% of 
intracranial aneurysms are caused by unruptured intrac-
ranial aneurysms (UIAs) [3]. Coil embolization is among 
the most commonly used methods to treat UIAs [4, 5]. 
Nevertheless, due to the potential for incomplete emboli-
zation and coil displacement resulting in recurrent UIAs 
after embolization, neuro-interventionists require exten-
sive clinical training with the guidance of experienced 
physicians over an extended period [6, 7].

The first coil plays an important role in determining 
the stability of intra-aneurysmatic embolization system 
[8–12]. Appropriate first coil can provide an enough 
space for subsequent coils and prevent embolization 
system from displacement [11]. How to choose appro-
priate first coils require accurate measurement of mor-
phological features (e.g., aneurysm size, height, and dome 
diameter) and extensive clinical experience [9]. These 
limitations hinder clinicians from small or inexperienced 
medical centers to perform coil embolization for UIAs, 
and hence, some UIA patients do not benefit from this 
surgery.

In this preliminary study, we retrospectively reviewed 
the radiological features and surgical data of UIA patients 
undergoing coil embolization in our medical institution. 
Based on the preoperative computational tomography 
angiography (CTA) data and the first coils used in practi-
cal operations, we developed a deep-learning system for 
determining the morphological features of UIAs and rec-
ommend the appropriate first coils for UIA embolization.

Methods
Patient selection
Patients undergoing coil embolization for UIAs in our 
medical institution from November 2022 to February 2023 
were retrospectively enrolled. The inclusion criteria were as 
follows: (1) patients aged 18–80  years old, (2) unruptured 
aneurysms and without history of subarachnoid hemor-
rhage, (3) UIAs were treated by coil embolization or coil 
embolization assisted by stent, and (4) the medical record 
was complete or could be traced. Patients matching the fol-
lowing criteria were excluded: (1) irregular UIAs (bleb or 
secondary aneurysm protruding or bi-/multi-lobular aneu-
rysm fundus) [13]; (2) tiny UIAs (< 3  mm) or large UIAs 
(> 10  mm); (3) combined cerebrovascular malformations 
(e.g., arteriovenous malformation) or intracranial tumors 
(e.g., meningioma and glioma); (4) significant stenosis in 
the parent artery of treated UIAs; (5) received UIAs treat-
ment at the cavernous sinus segment of carotid artery; (6) 
UIAs were fusiform, dissecting, traumatic, bacterial, or 
atrium myxomas aneurysms; and (7) UIAs were treated 
by flow diverters. A quality screening for CTA images was 

conducted which resulted in a further exclusion of cases 
with (1) image quality assessment score < 3 [14] and (2) 
abnormal artifacts in images. The data processing and prep-
aration procedure are presented in Fig. 1A. All patients were 
further classified as the derivation set (patients included 
from November 2022 to December 2022) and validation set 
(patients included from January 2023 to February 2023).

Study design
This preliminary study aimed to establish a model for 
predicting morphological features and recommending 
the diameter of the first coils for embolization. The study 
design is presented in Fig.  1B. Based on images from all 
included patients, we constructed a model for the seg-
mentation of UIAs and measurement of morphological 
features by using the convolutional neural network (CNN) 
model. The consistency between morphological features 
(including aneurysm location, size, height, volume, dome 
diameter and neck diameter) measured by senior doc-
tors and those predicted by the model was compared. 
Subsequently, we established and validated a model for 
recommending the diameter of first coils using the neu-
ral factorization machines (NFM) model. The match ratio 
between diameter of coil actually used and coil predicted 
by model was also explored to verify the performance of 
NFM model.

Data collection and measurement of morphological 
features
Demographic information such as age and gender, as 
well as the size of the initial coils employed, was obtained 
from the electronic medical records. All CTA source 
images were acquired using a CT scanner (Siemens 
Healthineers; Erlangen, Germany) under the follow-
ing parameters: slice thickness of 0.625  mm, a field of 
view of 25 mm, 256 slices, resolution of 512 × 512, win-
dow center/window width as 400/40, tube voltage of 
100–120 kV, and tube current of 500–600 mA. Scan time 
was < 5  s. Preoperative CTA data were collected as the 
digital imaging and presented in medical format. CTA 
data were reconstructed as the three-dimensional mod-
els using the Mimics 17.0 (Materialize, Belgium). Two 
neuro-interventionists (with > 15  years of work experi-
ence) measured the measured morphological features 
based on three-dimensional models and were blinded 
to the clinical information. Any discrepancies between 
the two investigators were solved by consulting a sen-
ior neuro-interventionist (with > 20  years of experience) 
who was also blinded to patients’ clinical information. 
The morphological features measured included aneu-
rysm location, size, height, volume, dome diameter, and 
neck diameter. The location was categorized as anterior 
communicating artery (Acom)/anterior cerebral artery 
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Fig. 1  Summary of data generation and study design. A The summary of data generation. One-hundred thirteen UIA patients receiving 
neuro-interventional surgery were included as the derivation cohort, and 40 patients were included as the validation cohort. B Study design. In this 
study, we firstly established a CNN model to automatically measure the morphological features of UIAs using the U-Net algorithm. Subsequently, 
a NFM model was established for recommending the diameter of first coils. UIA, intracranial aneurysm; CNN, convolutional neural network; NFM, 
neural factorization machines
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(ACA), internal carotid artery (ICA), middle cerebral 
artery (MCA), or posterior circulation (PC).

Automatic segmentation
The UIA was manually segmented using the 3D Slicer 
(www.​slicer.​org). Two neuroradiologists delineated 
intracranial aneurysm slice by slice in the axial direction 
of subtract images (post-contrast minus pre-contrast) on 
the 3D Slicer. Aneurysms were delineated based on their 
texture of light and dark reflected by vessel (contrasted). 
A total of 153 UIAs were labeled and randomly assigned 
to the training images (75%, n = 113) and testing images 
(25%, n = 40).

The neural network is developed using the U-Net 
method to segmentate the UIAs in the subtract CTA 
[15]. The process of segmenting involved an end-to-end 
approach where the model was fed with subtracted CTA 
images as input, and produced masks of UIAs as output, 
which were of the same dimensions as the input images. 
During data preprocessing, we magnified the images to 
the size of 224 × 256 × 256 by using bilinear interpolation. 
To estimate the distribution of input images, data aug-
mentation, including rotating, flipping, zooming, bright-
ness and contrast adjusting, and elastic deformation, was 
conducted based on the training images. Subsequently, 
we combined residual connections for each convolution 
block. Max pooling operation was applied to each layer 
of the encoder part, and the transposed convolution was 
performed in the decoder part. Finally, a feature map 
with the size of 16 × 16 × 16 was obtained in the bottom 
layer. After each convolution, group normalization and 
ReLU activation function were applied. During the train-
ing process, cross-entropy combined with exponential 
logarithmic loss was conducted. Losses were optimized 
using the Adam method. The learning rate was initial-
ized as 0.001, and the batch size was 14. The model was 
trained in 300 epochs with 400 steps in each epoch.

The model’s performance was evaluated based on the 
dice score, precision, F2 score, and recall score. True 
positive (TP), false positive (FP), and false negative (FN) 
were then calculated. The dice, precision, recall, and F2 
were defined as follows:

Dice =
2TP

2TP+ FP+ FN

Precision =
TP

TP+ FP

Recall =
2TP

TP+ FN

The morphological features, including aneurysm size, 
height, neck and dome diameter, and volume, were meas-
ured using the result of segmentation of UIAs obtained 
by the CNN model. The aneurysm size was the grav-
ity center of neck plane to the farthest point of aneu-
rysm dome [16]. The aneurysm height was considered 
the maximum perpendicular distance of the dome from 
the neck plane [16]. The diameter of neck was taken as 
the average of lines passing through geometric center of 
neck plane, and the diameter of dome was the average of 
lines passing through geometric center of largest plane 
paralleling to the neck plane. The aneurysm volume was 
reflected by the volume of the segmented dome [16].

The strategy to establish model for the diameter of first 
coils
A deep-learning (DL) model was established using NFM 
[17] in the Python (version 3.10). The prediction target 
was the diameter of the actual coils used. In total, 113 
patients in the derivation set were randomly assigned 
into the training set (90 patients, 80%) and testing set 
(23 patients, 20%). The framework of each NFM node is 
provided in Supplemental Fig.  4. The NFM model was 
trained based on selected features through a fivefold 
cross-validation. To further assess overfitting, a learn-
ing curve of the NFM model was developed based on 
the percentage of general matched cases (the difference 
between the diameter of coils predicted and the diameter 
of coils actually used was within ± 1 mm) of the training 
and testing set. An average of training percentages of all 
repetitions (based on the training set) was applied, and 
95% confidence interval (CI) was calculated based on the 
results of the fivefold cross-validation. If the testing per-
centage, determined from the testing set, fell within the 
95% confidence interval of the training percentage, then 
it was concluded that the model was not overfitting. The 
performance of model in recommending the diameter of 
first coils was validated externally using a different valida-
tion set.

The absolute match ratio and general match ratio were 
used to evaluate the performance of NFM model in rec-
ommending the diameter of first coils. The absolute 
matched cases were identified when the diameter of coils 
predicted perfectly matched that of the actual coils used. 
Additionally, cases where the predicted coil diameter dif-
fered from the actual diameter by no more than ± 1 mm 
were categorized as matches. The absolute and general 
match ratios were defined as follows:

F2 =
5× precision × recall

4 × (precision + recall)

http://www.slicer.org
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Statistics analysis
Statistical analyses were conducted with SPSS (version 
24.0, Chicago, USA). Continuous data with normal dis-
tribution were analyzed using the Shapiro–Wilk test. 
Continuous variables with normal distribution were pre-
sented as means and standard deviation. Data that did 
not follow normal distribution were presented as the 
medians and interquartile range (IQR). Categorical vari-
ables were presented as numbers (n) and percentage (%). 
Differences between continuous variables were compared 
by using Student’s t-tests or Wilcoxon rank-sum tests, 
and differences among categorical variables were ana-
lyzed using chi-square tests or Fisher’s exact tests. The 
reproducibility (between two investigators) and consist-
ency (between investigators and model) of morphological 
features (aneurysm size, height, neck and dome diameter, 
and volume) were evaluated using intraclass correlation 
coefficient (ICC). In these analyses, ICC > 0.8 was consid-
ered a good consistency.

Results
Baseline information of all included patients.
A total of 153 patients were enrolled from 236 UIA 
patients undergoing coil embolization (Supplemen-
tal Fig.  1). The clinical and radiological information of 
all patients are presented in Table  1. The median age 
of patients was 58 (range, 35–85) years, and 39 (25.5%) 

Absolutematch ratio =

number of absolutematched cases (perfectly matched)

all patients

General match ratio =
number of general matched cases (within ± 1mm)

all patients

patients were male. Among all UIAs, the median aneu-
rysm size was 5.1 (3.0–9.6) mm and 47 (30.7%) UIAs 
sited in Acom/ACA, 73 (47.7%) in ICA, 21 (13.7%) in 
MCA, and 12 (7.8%) in PC. The reproducibility of the 
measurement of morphological features between two 
investigators is shown in Supplemental Table 1.

An automatic model for morphological measurement 
of UIAs
The CNN model for measuring morphological features of 
UIAs was trained (our U-Net-based segmentation model 
on the images from 153 included patients as shown in 
Fig.  2A). CTA-sourced images were randomly divided 
into the training images (75%, n = 113) and testing 
images (25%, n = 40). The baseline information is shown 
in Table 1. The images of manual delineation and model 
delineation of two representative cases are illustrated in 
Fig. 2B. The dice between manual delineation and model 
delineation was 0.90 within the testing images (Fig. 2C), 
suggesting that the CNN model performed well in iden-
tifying UIAs. Further analysis showed that the accuracy 
of model to diagnosis UIAs was 0.94 within the testing 
images and was 0.97 for images from all patients (Supple-
mental Fig. 2A).

Using the three-dimensional model constructed by 
the CNN model, morphological features of UIAs (i.e., 
size, height, neck diameter, dome diameter, and volume) 

Table 1  Baseline information of all included patients

UIA Unruptured intracranial aneurysm, Acom Anterior communicating artery, ACA​ Anterior cerebral artery, ICA Internal carotid artery, MCA Middle cerebral artery, PC 
Posterior circulation

Characteristics All patients n = 153 Derivation set n = 113 Validation set n = 40

Age, median (IQR), years 58 (66–52) 58 (67–52) 59 (66–50)

Male, n (%) 39 (25.5%) 26 (23.0%) 13 (32.5%)

UIA location, n (%)

  Acom/ACA​ 47 (30.7%) 37 (32.7%) 10 (25.0%)

  ICA 73 (47.7%) 54 (47.8%) 19 (47.5%)

  MCA 21 (13.7%) 13 (11.5%) 8 (20.0%)

  PC 12 (7.8%) 9 (8.0%) 3 (7.5%)

UIA size, median (IQR), mm 5.1 (6.6–3.6) 4.2 (6.2–3.4) 6.4 (6.7–5.9)

UIA height, median (IQR), mm 3.0 (4.0–2.3) 3.3 (4.1–2.4) 2.5 (3.5–2.2)

Neck diameter, median (IQR), mm 2.0 (2.6–1.0) 1.5 (2.2–0.9) 2.7 (3.8–2.4)

Dome diameter, median (IQR), mm 6.4 (8.2–3.2) 4.8 (6.9–2.7) 8.3 (11.8–7.5)

UIA volume, median (IQR), mm 44.9 (18.6–128.1) 27.9 (13.5–53.6) 48.7 (29.9–110.3)
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Fig. 2  Establishment of an automatic morphological measurement model. A The flowchart of establishing CNN model to identify and segmentate 
UIAs. B The manual and model delineation images of representative cases. C The violin plots present the distribution of dice, F2, precision, and recall 
value within the testing set (n = 40). D The scatter dot plots present the correlation of aneurysm size and height measured by model and doctors. 
UIA, unruptured intracranial aneurysm; CNN, convolutional neural network
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Fig. 3  Establishment of a DL model for the diameter of first coils. A The flowchart of establishing NFM model for the diameter of first coils. Patients 
in the derivation set were grouped as the training set (80%, n = 90) and testing set (20%, n = 23). Based on the training set, a model for the diameter 
of first coils was trained. The accuracy of this model was validated based on the testing set. B The performance of model for recommending 
the diameter of first coils within the training set. The absolute match ratio was 67.8% (61/90), and the general match ratio was 91.1% (82/90). C The 
scatter dot plots present the correlation of diameter of coil actually used and coil predicted by model within the training set. D The performance 
of model for recommending the diameter of first coils within the training set. The absolute match ratio was 78.2% (18/23), and the general 
match ratio was 91.3% (21/23). E The scatter dot plots present the correlation of diameter of coil actually used and coil predicted by model 
within the testing set. NFM, neural factorization machines
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(the diagram of morphological measurement after UIA 
segmentation was given in Supplemental Fig.  2B) were 
measured. We obtained a good consistency (ICC value 
more than 0.85) between the morphological features 
measured by model and by doctors, within the training 
images and testing images (Fig. 2D, also see Supplemen-
tal Fig. 2C).

A deep‑learning model for the diameter of first coils
A deep-learning model for recommending the diameter 
of first coils using the NFM was further constructed using 
the morphological features of UIAs measured by the 
CNN model (Fig.  3A). All patients were grouped either 
to the derivation set (75% of all patients) and validation 
set (25% of all patients) (the baseline information was 
given in Table 1). The model was trained on the deriva-
tion set. The match ratio between the diameter of actual 
coils used and predicted by NFM model was investigated, 
and the results are presented in Table 2. For the training 
set, the absolute match ratio (perfect match) was 0.67 
(61/90), and the general match ratio (within ± 1 mm) was 
0.91 (82/90) (Fig. 3B). A good consistency was obtained 
between the diameter of actual coils used and those pre-
dicted by the NFM model (Fig.  3C). Within the testing 
set, the absolute match ratio was 0.78, and the general 
match ratio was 0.91 (Fig. 3D–E). Further analysis based 
on the learning curve revealed no overfitting issue in this 
NFM model (Supplemental Fig. 3).

The accuracy of NFM model was validated in the vali-
dation set, and the evaluation process of representative 
cases is presented in Fig. 4A–B. For the validation set, the 
absolute match ratio was 0.65 (26/40), and the general 
match ratio was 0.90 (36/40) (Fig.  4C). A good consist-
ency was obtained between the diameter of actual coils 
used and predicted by DL model for the validation cohort 
(Fig. 4D).

Discussion

Using a suitable tool could reduce the amount of time it 
takes for clinicians to become proficient in coil emboliza-
tion for UIAs and enhance the effectiveness of the embo-
lization procedure. In this current study, we established 
a deep-learning system, including a CNN model and 

a NFM model. The CNN model had a high accuracy in 
identifying UIAs (accuracy as 0.97). Subsequent analy-
sis showed that the morphological features measured 
by CNN model had a good consistency with the mor-
phological features measured by senior neuro-interven-
tionists (ICC value > 0.80). The NFM model established 
using the CNN model performed well in recommend-
ing the diameter of first coils, with general match ratio 
(within ± 1  mm) > 0.90. Thus, our deep-learning system 
may be clinically useful in guiding the surgical planning 
of coil embolization for UIAs.

Accurate measurement of morphological features of 
UIAs is essential to the surgical planning of coil embo-
lization. Previous studies mainly focused on establishing 
models for diagnosing intracranial aneurysms [18–21]. 
While the previous deep-learning model demonstrated 
a diagnosis accuracy of > 0.9 for intracranial aneurysms, 
it also greatly enhanced the ability of neuroradiolo-
gists to diagnose such aneurysms [21]. However, few of 
these studies have explored whether the segmentation of 
intracranial aneurysms using their models can accurately 
measure morphological features. In this study, we first 
asked three experienced neuro-interventionists to meas-
ure morphological features as the “gold standard.” Subse-
quent analysis demonstrated a good consistency between 
the morphological features measured by our CNN model 
and those obtained by the senior clinicians. Unlike pre-
vious works, this study evaluated the performance of 
model in measuring the morphological features of UIAs. 
Thus, our CNN model can provide a reliable reference for 
the clinical measurement of morphological features.

Neuro-interventionists who can perform coil emboli-
zation for UIAs are required to undergo a lengthy clinical 
training [22]. Because small and inexperienced centers 
usually lack neuro-interventionists with experience in 
coil embolization for UIAs and surgical operation, we 
trained a NFM model based on the CNN model to rec-
ommend the diameter of first coils for UIA embolization. 
Results showed that the diameter of first coils recom-
mended by our NFM model was generally matched with 
the diameter of first actual coils used. This demonstrated 
that our NFM model can help surgical planning of coil 
embolization for UIAs. By using this model, junior and 
inexperienced clinicians could learn how to measure the 
morphological features of UIAs accurately, as the same 
as guide the experienced clinicians. Subsequently, these 
medical professionals could engage with the NFM algo-
rithm to determine the appropriate size of coils to use for 
the embolization of UIAs. Thus, our deep-learning sys-
tem (including CNN model and NFM model) is likely to 
help trainers to deepen the understanding of morpholog-
ical measurement of UIAs and identify ways for choosing 
appropriate first coil for UIA embolization. This may help 

Table 2  The performance of NFM model for the diameter of first 
coils

NFM Neural factorization machines

Data sets Derivation cohort Validation 
cohort

Training set Testing set

Absolute match ratio 0.68 0.78 0.65

General match ratio 0.91 0.91 0.90
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Fig. 4  Validation of the NFM model for the diameter of first coils. A A representative case, whose diameter of first coil by model was absolutely 
matched the diameter of first coil actually used. B A representative case, whose diameter of first coil by model was generally matched the diameter 
of first coil actually used. C The performance of model for recommending the diameter of first coils within the validation set. The absolute match 
ratio was 65.0% (26/40), and the general match ratio was 90.0% (36/40). D The scatter dot plots present the correlation of diameter of coil actually 
used and coil predicted by model within the validation set. NFM, neural factorization machines
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shorten the training period for junior and inexperienced 
clinicians in learning about coil embolization for UIAs, 
despite the facts that small and inexperienced centers 
lack experienced neuro-interventionists.

In this study, CTA data were used to establish deep-
learning model. Although not good as digital subtract 
angiography, CTA showed the morphological features of 
UIAs noninvasively compared with magnetic resonance 
angiography. In addition, it was observed that the NFM 
model based on the CTA source data performed well in 
predicting the diameter of first coil for UIA embolization. 
Thus, CTA source data may serve as a reliable reference to 
guide surgical planning preoperatively. However, further 
studies were needed to compare the accuracy of model 
based on CTA source data and model based on other data 
in measuring the morphological features of UIAs.

Although we present interesting findings, there are sev-
eral limitations to this study. First, this work was based 
on a small sample and single-center study. Patient selec-
tion bias may also limit the quality of conclusions. More-
over, given that the parameters of CTA examination may 
be vary from center to center, thus the model established 
based on the data from single center may not be general-
ized to other centers. Second, our CNN model measured 
few morphological features of UIAs. There may be other 
morphological features related to the selection of the 
diameter of first coils. Third, this study did not evaluate 
the performance of NFM system on actual clinical condi-
tion. Whether the developed NFM system can improve 
the performance of junior and inexperienced clinicians 
in conducting coil embolization for UIAs needed to be 
further studied. Fourth, we excluded patients with large 
and irregular aneurysms, which may limit the generality 
of our conclusion.

Conclusion

In this current study, we established a deep-learning sys-
tem, which could measure the morphological features of 
UIAs and help make surgical planning of coil emboliza-
tion for UIAs.

Abbreviations
UIA 	� Unruptured intracranial aneurysm
CTA​	� Computational tomography angiography
CNN	� Convolutional neural network
DL	� Deep learning
NFM	� Neural factorization machines
Acom	� Anterior communicating artery
ACA​	� Anterior cerebral artery
ICA	� Internal carotid artery
ICC	� Intraclass correlation coefficient
MCA	� Middle cerebral artery
PC	� Posterior circulation
CI	� Confidence interval

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s41016-​023-​00339-y.

Additional file 1: Supplemental Fig. 1. The flowchart of patient enroll-
ment. Thins study finally enrolled 153 patients from 236 UIA patients. 
All included patients were grouped as the derivation cohort (113 UIA 
patients included from November 2022 to December 2022) and valida-
tion cohort (40 UIA patients included from January 2023 to February 
2023). UIA, unruptured intracranial aneurysms. Supplemental Fig. 2. 
Establishment of an automatic morphological measurement model. A. 
The accuracy of model to diagnose and segmentate UIAs. Within the 
training set and testing set, the accuracy of model to diagnose UIAs 
was >0.90. B. The diagram of morphological measurement after UIA 
segmentation. Aneurysm size, height, dome diameter and neck diameter 
were measured by doctors and model. C. The consensus analysis of 
morphological measurement between doctors and model using the 
intraclass correlation coefficient method. UIA, unruptured intracranial 
aneurysm. Supplemental Fig. 3. The learning curve of NFM model for 
the diameter of first coil. Supplemental Fig. 4. The framework of each 
deep Neural Factorization Machines node. The morphological features of 
UIAs measured by the CNN model and coil features information as input, 
the embedding layer projects each feature to a dense vector representa-
tion. The upper layer are factorization machine layer and hidden layer 
which are capable of learning higher order interactions between features. 
At last, the results from factorization machine layer and hidden layer are 
integrated into intermediate node. UIA, unruptured intracranial aneu-
rysm; CNN, convolutional neural network. Supplemental Table 1. The 
reproducibility of the measurement of morphological features between 
two investigators.
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